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a b s t r a c t

Herdability is a variant of controllability, and is an indicator of the ability to drive system states to a
specific subset of the state space. This paper characterizes the controllable subspace and herdability
of signed weighted networks. Specifically, a dynamic signed leader–follower network is considered,
in which a small subset of the network nodes (i.e., the leaders) is endowed with exogenous control
input and the remaining nodes are influenced by the leaders via the underlying network connectivity.
The considered network permits positive and negative edges to capture cooperative and competitive
interactions, resulting in a signed graph. Motivated by practical application, the system states are
required to be driven by the leaders to be element-wise above a positive threshold, i.e., a specific
subset rather than the entire state space as in classical controllability. Graph partitions are exploited
to characterize the controllable subspace of the system, from which sufficient conditions are derived to
render the system herdable. It is revealed that the quotient graph can be used to infer the herdability
of the original graph, wherein criteria of the herdability of quotient graphs are developed based on
positive systems. Examples are provided to illustrate the developed topological characterizations.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Networked multi-agent systems are increasingly applied in bi-
ological science (Muldoon et al., 2016), social science (Kan, Klotz,
Jr, & Dixon, 2015; Mirtabatabaei & Bullo, 2011), and engineer-
ing (Asimakopoulou, Dimeas, & Hatziargyriou, 2013; Klotz, Kan,
Shea, Pasiliao, & Dixon, 2015; Klotz, Obuz, Kan, & Dixon, 2018). A
subject of expanding interest, network controllability in these ap-
plications is indicative of the ability to arbitrarily control system
states. When a networked system is fully controllable, the system
states can be driven to any desired states. However, requiring a
system to be fully controllable is often restrictive and unnecessary
in many practical applications. For example, in applying adaptive
cruise control to a platoon of autonomous vehicles, the vehicles
are often required to maintain a desired positive speed. In a
political election, a candidate aims to drive the supportive rate
above a positive percentage in order to win. In these applications,
fully controllable systems become unnecessary, since driving the
vehicles’ speed or the candidate’s supportive rate to be negative
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does not make any physical sense. Instead, the relaxed controlla-
bility that drives the system states to a specific subset, rather than
the entire state space, as in classical controllability, is of more
practical significance. Such a relaxed controllability is referred to
as herdability (Ruf, Egerstedt and Shamma, 2018). To this end,
this work is practically motivated to characterize the herdability
of networked systems from graph topological perspectives.

Since both herdability and controllability concern the abil-
ity to drive system states, the literature on the controllability
of networked systems is first reviewed. Based on the type of
interactions, a network can be classified as either cooperative
or non-cooperative. Cooperative networks are often modeled as
unsigned graphs in which only positive edge weights are allowed
to represent cooperative interactions between network compo-
nents, while non-cooperative networks are often modeled as
signed graphs wherein both positive and negative edge weights
represent cooperative and competitive interactions, respectively.
The controllability of cooperative networks has long been a re-
search focus. For instance, the influence of network topological
structures on network controllability has been investigated using
a variety of tools, such as graph theoretic approaches (Haghighi
& Cheah, 2017; Liu, Slotine, & Barabási, 2011; Yazıcıoğlu, Abbas,
& Egerstedt, 2016), structural controllability (Liu, Lin, & Chen,
2013a, 2013b; Tang, Wang, Gao, Qiao, & Kurths, 2014), and con-
sensus based results (Aguilar & Gharesifard, 2015; Commault &
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Dion, 2013; Ji, Wang, Lin, & Wang, 2009). With respect to non-
cooperative networks, the controllability of signed graphs has
been investigated via structural balance in Alemzadeh, de Ba-
dyn, and Mesbahi (2017), Guan and Wang (2018), She, Mehta,
Emily Doucette, and Kan (2019), She, Mehta, Ton, and Kan (2020)
and Sun, Hu, and Xie (2017). Since network controllability is
closely related to the underlying graph topology, graph parti-
tion (cf. Cardoso, Delorme, & Rama, 2007 and Godsil & Royle,
2001) was exploited to characterize network controllability from
topological perspectives. In Egerstedt, Martini, Cao, Camlibel, and
Bicchi (2012) and Rahmani, Ji, Mesbahi, and Egerstedt (2009),
equitable partition and almost equitable partition were used to
develop conditions that render cooperative networks (i.e., un-
signed graphs) uncontrollable. In Aguilar and Gharesifard (2017),
necessary conditions of uncontrollable networks were developed
via almost equitable partition. These graph partition-based re-
sults were then extended to investigate non-cooperative net-
works (i.e., signed unweighted graphs) in Sun et al. (2017). Upper
and lower bounds of the controllable subspace of networked
systems were characterized based on graph partitions in OClery,
Yuan, Stan, and Barahona (2013), Schaub et al. (2016) and Zhang,
Cao, and Camlibel (2014). Despite substantial progress in charac-
terizing network controllability, topological characterizations of
herdability remain largely unknown.

Herdability, i.e., the ability to drive system states to a specific
subset in the state space, was recently studied in the work of Ruf,
Egerstedt et al. (2018). A positive subset of the state space was
considered in Ruf, Egerstedt et al. (2018), where the system states
are controlled to be element-wise above a positive threshold.
Positive systems are a particular class of systems where, provided
positive initial states, the states remain positive during evolu-
tion (Farina & Rinaldi, 2011). Necessary and sufficient conditions
for a herdable positive networked system were developed based
on controllable subspace and graph walks in Ruf, Egerstedt et al.
(2018). The results of Ruf, Egerstedt et al. (2018) were then ex-
tended to characterize the herdability of linear systems based on
sign patterns and graph structures in Ruf, Egersted and Shamma
(2018) and Ruf, Egerstedt, and Shamma (2019).

Inspired by the works of Ruf, Egersted et al. (2018), Ruf,
Egerstedt et al. (2018) and Ruf et al. (2019), this work considers
the herdability of an undirected signed weighted networked sys-
tem. Specifically, we consider a dynamic signed leader–follower
network, where a small subset of the network nodes (i.e., the
leaders) is endowed with exogenous control input and the re-
maining nodes are influenced by the leaders via the underlying
network connectivity. The considered network allows positive
and negative edges to capture cooperative and competitive in-
teractions, resulting in a signed graph. Motivated by practical
application, the system states are required to be driven by the
leaders to be element-wise larger than a positive threshold, i.e., a
specific subset rather than the entire state space as in classical
controllability. To study the herdability of signed leader–follower
networks, graph partitions are exploited to characterize the con-
trollable subspace of the system, from which sufficient conditions
are derived to render the system herdable. Examples are provided
to illustrate the developed topological characterizations.

The contribution of this paper are multi-fold. First, this work
characterizes the herdability of general undirected signed
weighted networked systems. Topological characterizations of
network herdability are developed using graph partitions. Since
previous research mainly focused on unsigned graphs or signed
unweighted graphs, generalized equitable partitions are devel-
oped in this work to take into account the edge weights of signed
graphs. As an exception, signed weighted graph was partially
investigated via graph partition in Aguilar and Gharesifard (2017).
Differing from most graph partition-based results that consider

Laplacian dynamics (Aguilar & Gharesifard, 2017; Egerstedt et al.,
2012; OClery et al., 2013; Rahmani et al., 2009; Schaub et al.,
2016; Sun et al., 2017; Zhang et al., 2014), this work consid-
ers the linear dynamics depending on the adjacency matrix of
the underlying graph, which has many applications in nature
(e.g. brain networks Gu et al., 2015) and man-made systems
(e.g., multi-agent networks Jafari, Ajorlou, & Aghdam, 2011). The
controllable subspace of such dynamics is then derived based on
the generalized equitable partition. In addition, it is revealed that
the quotient graph can be used to infer the herdability of the
original graph, where herdability criteria of quotient graphs are
developed based on positive systems. Since a quotient graph is
an abstract representation of the original graph, the complexity
of verifying the herdability of the original graph can be reduced
simply by verifying the herdability of quotient graphs.

2. Problem formulation

Consider a networked system modeled by an undirected
signed weighted graph G = (V, E,A), where V = {v1, . . . , vn}

denotes the node set and E ⊂ V × V denotes the edge set.
The interactions between nodes are captured by the weighted
adjacency matrix A =

[
aij

]
∈ Rn×n, where aij ̸= 0 if

(
vj, vi

)
∈ E

and aij = 0 otherwise. Differing from most existing research, self-
loops are allowed in this work, i.e., aii ̸= 0 for some i ∈ V . The
weight aij ∈ R takes real numbers, where aij ∈ R+ and aij ∈ R−

represent cooperative and competitive interactions between node
vi and vj in the network, respectively. Let A:,i and Ai,: denote the
ith column and ith row of A, respectively. The neighbor of node
vi is defined as Ni =

{
vj

⏐⏐ (vj, vi
)

∈ E
}
and the node degree of vi

is defined as βi =
∑

j∈Ni
aij. We will show in subsequent sections

that the designed node degree βi facilitates characterization of
the controllable space and herdability of signed graphs.

Let x (t) =
[
x1 (t) . . . xn (t)

]T
∈ Rn denote the stacked

system states1 of the network G, where each entry xi (t) ∈ R
represents the state of node vi. It is assumed that a subset Vl ⊆ V
of m nodes, referred to as leaders in the network, can be endowed
with external controls. The remaining nodes Vf = V \ Vl are
referred to as followers with Vl ∩ Vf = ∅. Without loss of
generality, the leaders’ and the followers’ indices are assumed to
be Vl = {1, . . . ,m} and Vf = {m + 1, . . . , n}. Suppose the system
states evolve according to the linear dynamics

ẋ (t) = Ax (t) + Bu (t) , (1)

where A ∈ Rn×n is the adjacency matrix, B =
[
e1 . . . em

]
∈

Rn×m is the input matrix with basis vectors ei, i = 1, . . . ,m,
indicating that the ith node is endowed with external controls
u (t) ∈ Rm. Differing from most existing results that consider
Laplacian dynamics, the dynamics (1) depends on the adjacency
matrix A, indicating a direct influence of the underlying network
topology on the system dynamics.

The herdability of the system (1) is defined as follows.

Definition 1 (Ruf et al., 2019). A networked system with dy-
namics in (1) is d-herdable if, for any x (0) ∈ Rn, the system
state x (t) can be driven by a control input u (t) to the set
Hd =

{
x =

[
x1 . . . xn

]T
∈ Rn

: xi ≥ d
}
in finite time, where d

is an arbitrary positive threshold.

Definition 1 implies a network is d-herdable if its states can
be driven to a specific subset Hd of the state space. Throughout
this work, the herdability of the system (1) is particularly referred

1 Generalizations to multi-dimensional system states (e.g., xi ∈ Rm) are
expected to be trivial via the matrix Kronecker product.
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to the d-herdability. Recall that the controllability matrix C =[
B AB · · · An−1B

]
indicates the controllable subspace of a

system (Hespanha, 2018). Therefore, the system (1) is completely
controllable, if the controllability matrix
C =

[
B AB · · · An−1B

]
has full row rank. Since this work

concerns driving x (t) to Hd, the following lemma shows how the
herdability of a system relates to the controllability matrix.

Lemma 1 (Ruf, Egerstedt et al., 2018). A networked system with
dynamics in (1) is d-herdable if and only if there exists an element-
wise positive vector k ∈ Im (C), where Im (·) represents the range
space of a matrix.

As indicated in Lemma 1, the network herdability depends on
the range space of the controllability matrix C, which is closely
related to the adjacency matrix A of the network. Motivated by
this observation, the objective of this work is to develop charac-
terizations of network herdability and its controllable subspace
from graph topological perspectives. When not explicitly stated,
the considered graphs are assumed to be undirected.

3. Characterizations of controllable subspace

This section presents topological characterizations of the con-
trollable subspace of the system (1). Graph partition is used as
the primary tool in exploring how network topology influences
the herdability of signed networks. Particularly, Section 3.1 gen-
eralizes the classical definition of equitable partition of unsigned
graphs to signed weighted graphs, from which Section 3.2 char-
acterizes the controllable subspace of system (1). Section 3.3 dis-
cusses the construction of equitable partitions of leader–follower
signed weighted graphs.

3.1. Generalized equitable partition

A graph can be partitioned into a set of cells, where each cell
is a subset of the nodes. Let π :V → {C1, C2, . . . , Cr} denote a
map that partitions the node set V into a set of distinct cells Ci,
i = 1, . . . , r , where ∪

r
i=1Ci = V and Ci ∩ Cj = ∅ for i ̸= j.

Let βπ

(
Cj, vi

)
=

∑
k∈Ni∩Cj

aik denote the cell-to-node degree of

vi from Cj under the partition π . Based on the partition π , we
can construct a quotient graph G/π = (Vπ , Eπ ,Aπ ), where each
cell Ci is treated as a node in Vπ and

(
Cj, Ci

)
∈ Eπ represents

a directed edge from Cj to Ci. Denote by Aπ =
[
aπ
ij

]
∈ Rr×r

the adjacency matrix of the quotient graph G/π where the ijth
entry of Aπ representing the average edge weights from Cj to Ci
is defined as

aπ
ij = βπ

(
Cj, Ci

)
=

∑
vi∈Ci

βπ

(
Cj, vi

)
nCi

, (2)

where nCi represents the number of nodes in Ci. Note that the
G/π can be a directed graph, even if G is an undirected graph.
Based on the defined cell-to-node degree, the equitable partition
of signed weighted graphs is introduced.

Definition 2. Consider an undirected signed weighted graph
G = (V, E,A) and let π = {C1, C2, . . . , Cr} be a partition of V .
The partition π is a generalized equitable partition (GEP) if, for
any two cells Ci and Cj where i and j are not necessarily distinct,
it holds that βπ

(
Cj, vm

)
= βπ

(
Cj, Ci

)
, ∀vm ∈ Ci.

In the literature, the classical equitable partition is often de-
fined based on the neighborhood of nodes, where an equitable
partition indicates that, for any two cells Ci and Cj, all nodes in
Ci have the same number of neighbors in Cj. Such a definition is
applicable to unweighted unsigned graphs, since the edge weight

Fig. 1. (a) A non-trivial generalized equitable partition of G. (b) The associated
quotient graph G/π .

aij only takes the value of 1 or 0, and, consequently, only the
neighborhood of nodes matters in partitioning a graph. However,
when considering signed weighted graphs, as in this work, the
classical equitable partition is no longer applicable, since aij is a
real number. Neighborhood of nodes alone are not sufficient to
partition a signed weighted graph.

In this work, Definition 2 generalizes the classical equitable
partition by defining βπ

(
Cj, vi

)
which takes into account the real

edge weights in graph partition. Definition 2 implies that, if π is
a GEP, every node in Ci has the same cell-to-node degree from Cj.
It is worth noting that the classical definition is a particular case
of the designed GEP in Definition 2, since βπ

(
Cj, vi

)
reduces to

indicate the number of neighbors of vi in Cj if aij ∈ {0, 1}. In
other words, any results developed based on GEP are immediately
applicable to unweighted graphs. In addition, it should be noted
that any graph G with n nodes admits a trivial GEP, i.e., π =

{C1, C2, . . . , Cn}, where each Ci is a singleton containing only vi.
Given a GEP π , the characteristic matrix of π is an n × r matrix
P(π) =

[
Pij

]
, where Pij = 1 if vi ∈ Cj and Pij = 0 if vi /∈ Cj.

Clearly, the non-zero entries of the jth column of P indicate the
node indices in the cell Cj.

Example 1. Fig. 1 illustrates the GEP π and the associated quo-
tient graph G/π . Fig. 1(a) shows a signed weighted graph G with
7 nodes and labeled edge weights. Node v1 is the leader while
the remaining nodes are the followers. A non-trivial generalized
equitable partition is π = {C1, C2, C3}, where C1 = {v1}, C2 =

{v2, v3, v4}, C3 = {v5, v6, v7}. It can be verified that all nodes
within the same cell have the same cell-to-node degree from
another connected cell (including itself). Based on the partition π ,
the quotient graph G/π is shown in Fig. 1(b), where the numbers
associated with the directed edges are the cell degree. Note that
self-loop is allowed in Fig. 1(a) and (b). In addition, the graph G is
undirected while the associated quotient graph G/π is directed.
The characteristic matrix P of the GEP π and the adjacency matrix
Aπ of the quotient graph G/π are given by

P =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ , Aπ =

[0 3 0
1 −3 −2
0 −2 0

]
.

3.2. Controllable subspace

Based on the defined GEP, this section discusses how the
graph partition characterizes the controllable subspace of the



4 B. She and Z. Kan / Automatica 115 (2020) 108900

system (1). Considering a matrix E and a matrix T with appro-
priate dimensions, the vector space generated by the columns of
E is called T -invariant if and only if there exists a matrix F such
that TE = EF (Godsil & Royle, 2001). That is, T maps any vector
from Im (E) back to the same space Im (E).

Theorem 1. Consider a signed weighted graph G with the adjacency
matrix A. Suppose π = {C1, C2, . . . , Cr} is a partition of G. Let P and
Aπ denote the characteristic matrix of π and the adjacency matrix
of the quotient graph G/π . The partition π is a GEP of G if and only
if AP = PAπ , i.e., Im (P) is A-invariant.

The proof of Theorem 1 is omitted here, since it is based
on the well known results on classical equitable partitions of
unweighted graphs and can be obtained by following a similar
proof as in Cardoso et al. (2007). Previous research (cf. Aguilar
& Gharesifard, 2017; Cardoso et al., 2007; Rahmani et al., 2009;
Zhang et al., 2014) demonstrated that if a graph G has an almost
equitable partition π , the range space of the associated charac-
teristic matrix P is L-invariant, i.e., LP = PLπ , where L and Lπ are
the Laplacian matrices of the graph G and the quotient graph G/π ,
respectively. Many results with respect to network controllability
and controllable subspace were developed based on the condition
LP = PLπ . However, it can be verified that LP = PLπ does not
in general hold for signed weighted graphs. For signed Laplacian
dynamics defined in Altafini (2013), almost equitable partition
does not guarantee Lπ to be P-invariant. It should be noted that a
particular Laplacian dynamics defined in Pan, Shao, and Mesbahi
(2016) indeed admits LP = PLπ , under the condition that there
exists an almost equitable partition.

To address this challenge, Theorem 1 reveals that the range
space of P is A-invariant if π is a GEP of G, providing a means
to characterize the controllable subspace of system (1) over
signed graphs. It is well known that the controllable subspace of
system (1) is

Im (C) = Im (B) + A × Im (B) + · · · + An−1
× Im (B) , (3)

which is the smallest A-invariant subspace that contains Im (B),
where ‘‘+ ’’ represents the union of two spaces (Hespanha, 2018).
Since Im (P) is A-invariant, Lemma 2 characterizes the control-
lable subspace from equitable partitions.

Definition 3. A GEP π is called leader-isolated generalized equi-
table partition (L-GEP) if every leader is a singleton cell in π .

Lemma 2. Suppose π is an L-GEP of the signed weighted graph G.
The controllable subspace of system (1) satisfies Im (C) ⊆ Im (P),
where C is the controllability matrix and P is the characteristic
matrix of π .

From the definition of the characteristic matrix P of an L-GEP
and the input matrix B in (1), one has Im (B) ⊆ Im (P). Lemma 2
then follows immediately, since

Im (C) = Im (B) + A × Im (B) + · · · + An−1
× Im (B)

⊆ Im (P) + A × Im (P) + · · · + An−1
× Im (P)

= Im (P) ,

where the fact that Im (P) is A-invariant from Theorem 1 is used.
Lemma 2 provides an upper bound of the controllable sub-

space of system (1), which implies how the controllable subspace
is related to the L-GEP of the graph. It should be noted that the
L-GEP of G may not be unique. Let Π = {π1, π2, . . .} be the set of
L-GEPs of G, which implies that Im (B) ⊆ Im (P) for every πi ∈ Π .
Consider two L-GEPs π1, π2 ∈ Π . The partition π1 is said to be
finer than π2, denoted as π1 ≤ π2, if each cell of π1 is a subset of
some cell of π2. As demonstrated in Zhang et al. (2014),

π1 ≤ π2 ⇐⇒ Im (P2) ⊆ Im (P1) . (4)

If πi ≤ π∗ for any πi ∈ Π , then π∗
∈ Π is referred to as the

maximal L-GEP. In other words, π∗ is the coarsest L-GEP, since
the cells of any πi ∈ Π are subsets of the cells of π∗. Clearly, for
any πi ∈ Π ,

Im
(
P

(
π∗

))
⊆ Im (P (πi)) (5)

obtains from (4). From (5), Lemma 3 is an immediate conse-
quence.

Lemma 3. The controllable subspace of system (1) can be upper
bounded by Im (C) ⊆ Im (P (π∗)), where π∗ is the maximal L-GEP
of G.

Compared with Lemma 2, a tighter upper bound of C derives
from Lemma 3. For a system evolved with Laplacian dynamics,
similar upper bounds of its controllable subspace were developed
via almost equitable partition in Cardoso et al. (2007), Sun et al.
(2017) and Zhang et al. (2014). As discussed previously, Im (P)
is not L-invariant for signed graphs. Therefore, the upper bounds
developed in Cardoso et al. (2007), Sun et al. (2017) and Zhang
et al. (2014) are not applicable in this work.

3.3. Construction of π∗

The controllable subspace C is characterized based on the
maximal L-GEP π∗. This section presents an algorithm to identify
the maximal L-GEP π∗. The algorithm consists of the following
steps:

Step 1: Let π =
{
C1, . . . , Cm, Cf

}
be the initial partition, where

Ci = {vi}, i = 1, . . . ,m, indicates that each leader is
a singleton cell in π and Cf = Vf represents the set of
followers.

Step 2: For each node vi ∈ Cf , calculate its node degree βi =∑
j∈Ni

aij, where aij is the weight associated with
(
vj, vi

)
∈ E . The nodes with the same node degree are then
grouped into the same cell, i.e., Cf =

{
Cm+1, Cm+2, . . . , Cq

}
.

That is, the initial partition is refined by splitting Cf into a
set of q − m cells, where the nodes in each cell have the
same node degree.

Step 3: For each node vi in Cj ∈ π , j ∈ {m + 1, . . . , q}, calculate
the cell-to-node degree βπ

(
Cp, vi

)
=

∑
k∈Ni∩Cp aik, p ∈

{1, . . . , q}. Nodes with the same cell-to-node degree are
grouped into the same cell and Cf is then updated based
on the newly created cells such that the nodes in each cell
have the same cell-to-node degree.

Step 4: Repeat Step 3 until no cells can be split.

Lemma 4. Provided an undirected signed weighted graph G =

(V, E,A), the L-GEP π∗ constructed from Steps 1–4 is maximal.

Proof. By Definition 2, it is clear that the algorithm yields a
generalized equitable partition since all nodes within the same
cell have the same cell-to-node degree. The rest of the proof
shows that the L-GEP is maximal. If the graph only contains trivial
GEP, i.e., each cell only contains one node, the GEP obtained
through the algorithm is indeed an L-GEP π∗. Suppose π1 is a
non-trivial L-GEP obtained from the algorithm and there exists
another L-GEP π2 such that π2 contains π1. That is, every cell in
π1 is a sub-cell of some cell in π2. Suppose that two nodes vp
and vq are in two different cells in π1 but within the same cell
in π2. Based on Step 3, vp and vq are separated in two different
cells if and only if there exists a cell Cj, such that βπ

(
Cj, vp

)
̸=

βπ

(
Cj, vq

)
. However, this condition contradicts the fact that vp

and vq are in the same cell in π2. Hence, π1 constructed from the
algorithm is guaranteed to be maximum.
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4. Characterizations of network herdability

Using the characterized controllable subspace, the herdability
of system (1) is investigated in this section. Section 4.1 re-
veals that the herdability of G can be verified based on its quo-
tient graph G/π . Section 4.2 presents the methods for verifying
network herdability from positive systems’ perspectives.

4.1. Herdability via quotient graphs

Consider a quotient graph G/π constructed from an L-GEP
π = {C1, . . . , Cr}, where the first m cells are the leader cells with
the follower cells indexed from m + 1 to r . When considering
Laplacian dynamics (cf. Egerstedt et al., 2012; OClery et al., 2013;
Schaub et al., 2016), due to the consensus properties of graph
Laplacian, the average of system states in each cell, i.e., x̄i =∑

j∈Ci
xj, is often used to yield a compact system representation

˙̄x (t) = Lπ x̄ (t)+Bπuπ (t). Since such a dynamics is no longer valid
to represent the evolution of system states when considering
adjacency dynamics (1), the sum of states in each cell is used
instead. Let x̂ =

[
x̂1 . . . x̂r

]T
∈ Rr denote the stacked states,

where each entry x̂i =
∑

j∈Ci
xj represents the sum of the states

in Ci. The system (1) can then be rewritten in a compact form of
˙̂x (t) = Aπ x̂ (t) + Bπuπ (t) , (6)

where uπ ∈ Rm is the control input reorganized from u in (1)
based on the L-GEP π , and Bπ =

[
e1 · · · em

]
∈ Rr×m is

the input matrix with basis vectors ei indicating the ith cell is
the leader cell endowed with external controls uπ . To see that,
consider the ith row of (6),

˙̂xi (t) =

∑
j∈{1,...,r}

aπ
ij x̂j (t) + Bπ

i,:uπ (t)

=

∑
j∈{1,...,r}

βπ

(
Cj, Ci

)
x̂j (t) + Bπ

i,:uπ (t) ,

where Bπ
i,: represents the ith row of Bπ . From (1), summing the

dynamics of the nodes vi ∈ Ci, one has

∑
vi∈Ci

ẋi =

∑
vi∈Ci

⎛⎝∑
vj∈V

aijxj + Bi,:u (t)

⎞⎠
=

∑
vi∈Ci

⎛⎝∑
vj∈C1

aijxj + · · · +

∑
vj∈Cr

aijxj

+Bi,:u (t)

⎞⎠ ,

where
∑

vi∈Ci

∑
vj∈Cj

aijxj = βπ

(
Cj, Ci

)
x̂j (t) and

∑
vi∈Ci

Bi,:u (t) =

Bπ
i,:uπ (t). Therefore, (6) is an equivalent representation of the

system (1).

Theorem 2. Consider a system (1) evolving over a signed weighted
graph G. Let π be an L-GEP of G, which yields a quotient graph
G/π with dynamics (6). The system (1) over G is d-herdable if the
system (6) over G/π is d-herdable.

Proof. If the system (6) over the quotient graph G/π is
d-herdable, x̂ can be driven by uπ element-wise above an ar-
bitrary positive threshold d. Since each entry x̂i can be driven
above d, there must exist at least one node v ∈ Ci whose state
is positive. Let K denote the set of state indices for which xi > 0,
∀i ∈ K. Thus, we can construct a vector k ∈ Im (C) such that
ki > 0, ∀i ∈ K, since vi is d-herdable (Ruf, Egerstedt et al.,

2018). Note that, for each cell in π , there exists at least one
node whose corresponding entry in k is positive. According to
Lemma 2, k ∈ Im (C), Im (C) ⊆ Im (P), leading to k ∈ Im (P).
Since the columns in P are linearly independent and the non-
zero entries are all ones, k ∈ Im (P) indicates that the entries
in k corresponding to the nodes in the same cell must all be
positive. Therefore, k ∈ Im (C) is an element-wise positive vector.
By Lemma 1, the system (1) evolving over G is d-herdable. □

Verifying network herdability based on Lemma 1 can be chal-
lenging, since it needs to check the existence of an element-wise
positive vector k ∈ Im (C). Such a method can be significantly
challenging, or even prohibitive, when addressing large-scale net-
works. Theorem 2 suggests that, rather than directly verifying the
herdability of G, the quotient graph G/π can be exploited. The
graph G/π can be viewed as an abstract representation of G that
captures the key topological structure of G while preserving its
certain properties (e.g., herdability). Since G/π is more compact
than G in terms of system dimensions, Theorem 2 provides an
efficient means to investigate the herdability of G.

4.2. Herdability of positive systems

Since G/π can be used to verify network herdability, this
section presents verification methods based on positive systems.

Definition 4 (Farina & Rinaldi, 2011). A dynamical system ẋ (t) =

f (x (t) , t), x ∈ Rn, is a positive system if x (0) ≥ 0n implies
x (t) ≥ 0n for all t .

Definition 4 indicates positive systems are a class of systems in
which the states remain non-negative during evolution, provided
the initial states are non-negative. As indicated in De Leenheer
and Aeyels (2001), an affine system ẋ = Ax + b is a positive
system if the system matrix A ∈ Rn×n is a Metzler matrix2 and
b ∈ Rn is element-wise positive. Therefore, if system (1) evolves
on an unsigned graph (i.e., the associated adjacency matrix A is
a Metzler matrix), system (1) is positive, since there always exist
control inputs u for leaders such that Bu is element-wise positive.
Ensuing from Ruf, Egerstedt et al. (2018), Lemma 5 characterizes
how positive system infers network herdability:

Lemma 5 (Ruf, Egerstedt et al., 2018). A positive system is com-
pletely d-herdable if and only if it is input connectable, i.e., there
exist (directed) paths from leaders to followers.

However, when evolving on signed graphs, the system matrix
A in (1) is no longer a Metzler matrix due to potential negative
edge weights. Theorem 3 represents how the quotient graph can
be exploited to verify network herdability.

Theorem 3. Consider a system (1) evolving over a signed weighted
graph G. Let π be an L-GEP of G, which yields a quotient graph G/π
with dynamics (6). The system (1) over G is d-herdable if G/π is
input connected (i.e., follower cells are reachable from leader cells)
and the cell degree between distinct cells in G/π is non-negative.

Proof. Consider the quotient graph G/π . If the cell degree be-
tween distinct cells in G/π is non-negative, the matrix Aπ is
a Metzler matrix. Note that Aπ remains a Metzler matrix if
the cell degree with respect to itself is negative (i.e., self-loop
with negative weight). Per Definition 4, system (6) is a positive
system since there always exist control inputs uπ for leader cells
such that Bπuπ is element-wise positive. In addition, if G/π is
input connected, system (6) is d-herdable by Lemma 5. Therefore,
system (1) on G is also d-herdable by Theorem 2. □

2 A matrix is called a Metzler matrix if all its off-diagonal entries are non-
negative.
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Fig. 2. (a) A non-trivial generalized equitable partition of G, where C1 = {v1}

and C2 = {v2} are leader cells, and C3 = {v3, v4} and C4 = {v5, v6}. (b) The
system (6) evolving on G/π is a positive system.

Theorem 3 indicates that, even if G is signed with negative
edge weights, G is d-herdable, provided G/π satisfies the con-
ditions stated in Theorem 3. In other words, in order to verify
the herdability of G, we only need to determine if G/π is input
connectable and the cell degree between distinct cells in G/π is
non-negative.

Example 2. To illustrate Theorem 3, consider a signed graph G as
shown in Fig. 2(a). The nodes v1 and v2 are assumed to be leaders
while the remaining nodes as followers. Let π = {C1, C2, C3, C4}

be an L-GEP of G, where C1 = {v1}, C2 = {v2}, C3 = {v3, v4},
C4 = {v5, v6}. The edge weights are labeled along the edges. Due
to the existence of negative edge weights, the adjacency matrix
A is not a Metzler matrix; consequently, it cannot be determined
if system (1) is a positive system. To verify the herdability of G,
the quotient graph G/π is constructed as shown in Fig. 2(b). Since
Aπ is a Metzler matrix and the leader cell has directed paths to
all other cells (i.e., input connectable), system (6) is d-herdable,
and therefore G is d-herdable.

5. Conclusion

The herdability of signed weighted graphs is investigated in
this work, wherein graph partitions are exploited to characterize
topological structures to ascertain network herdability. Gener-
alized equitable partitions are developed to take into account
the edge weights of signed graphs. The controllable subspace of
such dynamics is then derived based on the generalized equitable
partition. It is discovered that the quotient graph can be used
to infer the herdability of the original graph, for which criteria
for herdability of quotient graphs are developed based on pos-
itive systems. Additional research will consider graph partition
on signed directed graphs or other graph-theoretic methods to
characterize the herdability of general signed graphs.
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